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Abstract. Supervised learning algorithms have been widely applied in
tracking-by-detection based methods for object tracking in recent years.
Most of these approaches treat tracking as a classification problem and
solve it by training a discriminative classifier and exhaustively evaluating
every possible target position; problems thus exist for two reasons. First,
since the classifier describes the common feature of samples in an implicit
way, it is not clear how well the classifier can represent the feature of the
desired object against others; second, the brute-force search within the
output space is usually time consuming, and thus limits the competence
for real-time application. In this paper, we treat object tracking as a
problem of similarity matching for streaming data. We propose to apply
unsupervised learning by Locality Sensitive Hashing (LSH) and use LSH
based similarity matching as the main engine for target detection. In
addition, our method applies a Support Vector Machine (SVM) based
supervised classifier cooperating with the unsupervised detector. Both
the proposed tracker and several selected trackers are tested on some
well accepted challenging videos; and the experimental results demon-
strate that the proposed tracker outperforms the selected other trackers
in terms of the effectiveness as well as the robustness.

1 Introduction

Object tracking in unconstrained scenarios is one of the fundamental prob-
lems of computer vision. The challenge in this topic lies mainly in the complexity
of tracking environments such as severe illumination change, target deforma-
tion, background clutter, partial occlusion, to name just a few. Inspired by the
tracking-by-detection framework [1], which has been proposed to treat object
tracking as a detection problem and solve it by supervised learning and pre-
diction, a major research axis has been focused on building online classifiers to
describe the dynamic target with discriminative power against the background.
Among this group, Garbner at al. [2] [3] and Stalder et al. [4] applied boosting
algorithm for the classification task. Babenko [5] extended the idea by using
a more sophisticated sampling strategy to alleviate ambiguity among training
data. Meanwhile, SVM has been deeply exploited; for example, the method pro-
posed in [6] exploits an online-SVM algorithm called Larank [7] [8] and solves the
curse of kernelization by maintaining a fixed-sized set of support vectors [9] [10].
Aiming at improved performance of that idea, several SVM-based trackers [11]
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[12] [13] has been proposed in three aspects respectively: increasing the sensi-
tivity to new samples, strengthening the adaptive ability on target deformation,
and fusing multiple features by binary code to build a better target model.

In spite of demonstrated success in previous research, classification-based
trackers often suffer drifting problems where a tracker confidently tracks a po-
sition that covers the true target location in part and can hardly correct itself
once it starts to make such mistake. This is mainly because that treating tracking
problem as a classification task is not straightforward and has inevitable defects.
For most supervised algorithms [2] [5] [6] [14] [15], the basic idea is to train a
function h : X → R, where X is feature space and h returns a classification
confidence score evaluating how likely a sample would be the target. The func-
tion h acts as a summary of target appearance so far from the beginning, and is
updated online by continuously adding more training samples frame by frame.
This is where severe drifting problems may occur because training samples at
different time are equally treated in those algorithms, i.e., old samples have the
same influence on h as new samples do, while the new ones in fact should have
more influence in order to keep h up-to-date. Previous research has been done
to alleviate this problem by weighting more on the new data [11]. However, un-
derrating old data may lead to incomplete view of the target and the fragility to
noise. The dilemma is due to the inherent flaw of supervised methods, that is,
trying to train an implicit function describing common feature of all the train-
ing samples at the cost of each samples uniqueness. According to that implicit
function, however, it is difficult to evaluate how well the trained function can
represent the varying target and how confident it is to track.

The main contribution of this paper is that we propose a novel tracking
algorithm based on unsupervised learning and similarity search. Using a new
framework for incorporating unsupervised learning with supervised learning, our
algorithm is carefully designed to prevent drifting problems and to improve the
overall accuracy. Later we will show the effectiveness of our method by experi-
mental results; here, we want to highlight the advantages of our algorithm over
supervised approaches in the following two aspects.

First, an intuitive understanding of tracking by human vision has helped us
come up with better ideas. After confirming a target, what a human being does
is to keep memorizing new appearance of the target while detecting it according
to the memory. This mechanism can be well exported to computer vision system
by applying unsupervised learning and similarity matching based on it. Specif-
ically, the process of unsupervised learning corresponds to the human keeping
memorizing target, and similarity matching acts like human eye detection based
on the learned data. We claim that our novel tracking framework overcomes the
main flaw of supervised methods. On the one hand, thanks to the large capacity
provided by hash tables, all possible appearance of the target can be learned,
and this ensures complete knowledge of all possible appearance of the target; on
the other hand, the uniqueness of a sample is well preserved because each sam-
ple is individually stored without information loss, and the proposed detection
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strategy is able to output a clear path to find the target based on this complete
set of samples rather than a vague summary of them.

Second, our method avoids the redundancy of brute-force search in the de-
tection steps of supervised methods. Suppose X ∈ Rd is the feature space where
d is the feature dimension, and Y is the search space with all possible target
positions, then the new target position is estimated by the following function

y = argmax
y∈Y

h(x
pt−1◦y
t ) (1)

where pt−1 ∈ P is the target position on t − 1 with t = 1, 2, ..., T being the
discrete time instants, yt ∈ Y is the transformation such that the new position
is approximated by the composition defined as pt = pt−1 ◦ yt, and xpt ∈ X is the
feature of a sample at position p at time t. It is usually in a brute force manner to
find yt and is usually time costly but inevitable due to the fact that supervised
classification or regression merely predicts a value rather than a vector or a
structure that explicitly represents the desired transformation. Therefore, every
potential sample needs to be enumerated to find the optimal one. In contrast,
our method returns the specific sample that is the most similar to the query.
That means, the output of our core engine is not a value but a datum in the
same format with the query. If we record each datum’s relative location to the
target, then after similarity searching, we can consider the most similar sample’s
relative position as the query’s and easily get the target position by its inverse.
Specifically, the position estimation function in our approach becomes

yt = g(x
pt−1

t ) (2)

where g retrieves the nearest neighbor of x
pt−1

t and returns the associated at-
tribute, without checking every possible transformation in the output space.
Therefore, brute-force searching in the output space is avoided and time com-
plexity is reduced from O(n) to O(1) where N is the amount of candidates in
the output space Y .

The remaining of this paper is organized as follows. In Section 2 we will dis-
cuss the learning and detection steps of our algorithm respectively, and the pro-
posed cooperation strategy between LSH and SVM will be described in details.
In this section we also present the implementation procedures of our approach
and two algorithms are provided; one for the learning step and the other for the
detection step of the proposed approach. Experiments to examine the difference
between our proposed tracker and 13 other selected trackers are conducted in
Section 3. Both the quantitative and qualitative performance evaluations will be
discussed, according to experimental results. Effectiveness and robustness of our
tracker will be demonstrated. Section 4 concludes the paper.
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2 Technical Details

2.1 Learning

Benefiting from the key-value indexing architecture of LSH tables, the value
domain can be filled with a structure that directly represents the transformation.
Specifically, as shown in Figure 1, in frame ft ∈ F , we take a fixed number of
samples within a preset radius centered at the target position p = pt ◦ y by
transformation y ∈ Y . We extract the sample feature xpt and generate a key-value
pair < xpt , y

−1 > where y−1 is the inverse of y such that p◦y−1 = pt◦y◦y−1 = pt,
and insert it into the hash tables. By doing this, the tracker learns how each
sample can be transformed back to the center, and this is the foundation of our
detection step, to be described later.

Without loss of generality, we only consider targets 2D translation to sim-
plify the problem, and therefore the transformation between two boxes can be
represented as a vector y ∈ Rn indicating 2D displacement from one to another.
Extension to more complex transformation is straightforward and can be real-
ized by simply substitute y with a more sophisticated structure that describes
the enriched transformation model.

(a) (b) (c)

Fig. 1: Illustration of our learning strategy: (a) a random frame from a test video; (b) a certain
number of boxes are generated around the current target box (in green) for sampling; (c) for each
sample (in colors other than green), a transformation structure is associated with it. Since only
translation is considered, the transformation structure here is a 2D vector indicating the offset from
the sample to the target

2.2 Detection

Figure 2 illustrates the detection step with an example in two consecutive
frames. As mentioned earlier, the position estimation function g in Equation (1)
searches for a querys nearest neighbor by its key and returns the corresponding
value. Given a previous target position pt−1 at time t, the task of detection is
to estimate a transformation yt according to Equation (1) such that the new
target position is achieved by the composition pt = pt−1 ◦ yt. However, a simple
calculation by Equation (1) is not sufficient to get accurate results, since simi-
larity searching is an approximation method with random errors and they may
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accumulate along the tracking. We propose two ways to minimize the potential
error. The first is to do the position estimation in a gradient-descent-like way.
The second is to cooperate with supervised classification. We describe the former
in this section, and details about the latter will be discussed in the next section.

We refer to the mechanism of gradient descending and propose to do simi-
larity searching in an iterative manner. In frame ft, we apply Equation (1) for
at most M rounds rather than only once. On each round m = 1, 2, ...,M , we
obtain a new estimated target position by pmt = pm−1

t ◦ ym, where we define

p0
t = pt−1 as the target position in ft−1, and ym = g(X

pm−1
t

t ) means the trans-
formation ym in round M is obtained according to the output of round m − 1.
The iteration stops either when it reaches M rounds or when the transformation
ym is small enough. Since only 2D translation is considered in this paper, we
define that ym is sufficiently small when ‖ym‖2 decreases to less than a preset
threshold δ. Ideally, this condition should be as strict as ‖ym‖2 being exactly
zero which corresponds to the exact expected target position. However, since
our calculation is discrete and based on feature similarity rather than real gra-
dient, convergence on ‖ym‖2 is not guaranteed. Considering the high flexibility
of tracking environment, it may be the most case where ‖ym‖2 shakes around a
small value around zero. That is why we set a small threshold δ to stop iteration
softly. On the other hand, if the computation fails to converge into the threshold,
it probably means the target just suffered a large change on appearance and a
certain number of iteration would suffice for a good estimation. Eventually, we
have the final transformation yt = ym, 1 ≤ m ≤M .

(a) (b) (c) (d)

Fig. 2: Illustration of our detection strategy. (a) is one frame of the video at time t−1 and the green
box is the target position, while the orange box in (b) is one of the training samples learned at t−1.
Then the target moves towards left and (c) is the frame at time t, but the target box still stays
where it was in (a). To detect the new target position, a similarity searching is done on the sample
in green box in (c), and the result indicates that the green sample in (c) is in similar situation of
the orange sample in (b). Given that, the tracker retrieves the transformation associated with the
orange box, and moves the green one towards left to the blue one, which is the new target position
at time t as shown in (d)

2.3 Cooperation with supervised classification

Collaboration between tracker and validator has been successfully applied
in the previous research [4] [16]. In [16], an independent fern-like structure is
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used to learn a binary classifier in a supervised manner, and the tracking results
are verified by it in order to ensure high accuracy. In [4], an online supervised
recognizer is trained as an adaptive prior for tracking. The proposed method in
this paper applies the similar idea, and we note that our supervised classifier
can greatly improve the tracker, in the following two points of view.

Firstly, a potential issue of similarity matching is that the nearest neighbor
may not be associated with the best transformation. This could be ascribed
to large appearance variation of the target and the intrinsic approximation of
similarity matching. Inspired by [16], we propose to use the classifier verifica-
tion strategy to solve this problem. In the detection step, we retrieve K nearest
neighbors instead of only one, and sort them in descending order according to
the similarity with the query. Then we make a temporal transformation based
on each of these neighbors associated models. The image patch within the trans-
formed box is sent to the classifier for a verification. If the feedback is positive,
it means the transformation is good. We do such verification from the most
similar neighbor to the least, and it stops once the classifier reports the first
positive one. If there is no such neighbor then we consider the LSH detection
to be plausible, and simply pick the first one regardless of its verification result.
Plausible LSH detection doesnt necessarily mean tracking failure but only in-
dicates conflict between the tracker and the verifier, and when it happens we
always choose the trackers output. In fact, during our experiment such conflict
occurs for very few times. Figure 3 shows the percentage of frames where posi-
tive nearest neighbors exist for each of our 15 test videos. As shown, successful
cooperation between LSH tracker and SVM verifier occurs for the most time and
the average percentage of verified detection is above 97%.

Fig. 3: Number of frames containing positive neighbors and their percentages

Secondly, in most supervised approaches, new data is sampled once per frame
to update the classifiers. It is beneficial to do learning so often in supervised
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setting, since more data can provide richer information about the target and
alleviate the ambiguity of the classifier. In contrast, our LSH based algorithm
may suffer from frequent updating. The main reason is that LSH tables preserve
each individual sample rather than integrate all of them. Therefore, with a higher
updating frequency, consecutive samples would be closer on the timeline and they
would become more similar. As a result, similarity matching is more likely to
be confused when selecting the nearest neighbor, leading to inaccurate output.
Ideally, learning should run faster when the target changes significantly and
slower when it doesnt. That is to say, the frequency is controlled by the level of
target variation.

Now we need a way to determine when the target is undergoing fast change.
We notice that well-structured classifiers may also be efficient tools to detect
data novelty, and SVM is one of them [17] [18]. The support vectors can be
regarded as a brief description of all previous samples, and increment of support
vectors during learning is usually associated with large adjustment of the split
hyper-plan. This is a sign of singular data among the training data set. In the
tracking scenario, it can be interpreted as significant appearance change of the
target. Inspired by this, we propose a simple novelty detection strategy: variation
occurs only when there are new positive support vectors added. Since we update
the SVM classifier in every frame, support vectors increase simultaneously with
the targets change, but the frequency is much less than once per frame. Figure 4
shows the percentage of frames where new positive support vectors occur for
all the 15 test videos. As we can see, the value varies from 4.78% to 51.22%,
which is mainly due to the different levels of target variation in different videos.
Meanwhile, the average percentage is only 23.35%, indicating that less than
one fourth of frames have the necessity to update the LSH database. Both the
variance in percentage and the low mean value demonstrate the effectiveness and
efficiency of our dynamic strategy.

Fig. 4: Number of frames where new positive support vectors are added and their percentages
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2.4 Implementation Details

The streaming form of image data requires the algorithm to be in an online
manner. It is intuitive to implement LSH online, since we only need to periodi-
cally insert new sample and do queries based on current data. When the size of
data reaches the maximum capacity of hash tables, we simply delete the oldest
data to create space. For the online SVM, some research has been done on this
topic [6] [7] [8] [10]. We refer to Struck [6] and take advantage of the accuracy
and speed of Larank [7] by using it only in 2-class setting. Similar with [6], we
also apply a budget strategy to maintain a maximum number of support vectors
in order to keep the computational cost acceptable.

The concept of LSH was firstly introduced by Indyk and Motwani in [19]. The
main property of LSH is that similar items have high probability to be collided
being mapped into the same buckets. During the past decade many variants have
been proposed and their success has been demonstrated [20] [21] [22] [23] [24].
In this research we use Multi-Probe Locality Sensitive Hashing (MPLSH) [22] as
the implementation of LSH. MPLSH is based on p-stable distribution hashing
[20], where each hash function is defined by:

ha,b(v) = ba · v + b

W
c (3)

where a is a normalized d-dimensional random vector generated by a Gaussian
distribution, W is a real number and b is a random number chosen in [0, W].
The multi-probe strategy aims at generating a probing sequence of buckets that
are most likely to contain the most similar items, in order to obtain as many
nearest neighbors as possible within an acceptable computing expense.

Algorithm 1 Learning step of our tracking algorithm (from the second frame)

Input:
the new target position pt in the t-th frame ft;

1: Obtain a set Spos = (sj , yi)|i = 1, 2, ..., L by sampling at each position within a
radius R1 centered at pt, then obtain the negative set Sneg = (sj , yj)|j = 1, 2, ...M
by randomly selecting M samples out of a radius R2 with R1 < R2;

2: Update the SVM classifier by Spos and Sneg, check if there is new positive support
vector added;

3: if there is new positive support vector added or it is at the update period point,
then

4: Obtain a set S = (si, yi)|i = 1, 2, ..., N containing all the N samples within a
radius R2 centered at pt, with yi being the associated transformation of si.
Then insert each si into the LSH database;

5: end if

The main workflow of the learning step is described in Algorithm 1. For
the first frame we conduct learning for both the LSH database and the SVM
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classifier. For the rest frames, we update the SVM classifier and check if any
new positive support vector is added. If so, or if not but it is at the period point
for static update, we update the LSH database. The sampling strategy for the
SVM classifier is similar to [15] with a little modification, where positive samples
are taken at every possible position that is close to the target, while negative
samples are randomly chosen within an area far away from the target.

Algorithm 2 Detection step of our tracking algorithm

Input:
t-th frame ft; target position in the t− 1-th frame pt−1;

Output:
target position pt in the t-th frame f − t;

1: p0 = pt−1;
2: for i = 1 to M do
3: Do similarity searching on pi−1 and get the neighbor set P = pk|k = 1, 2, ..., k

containing K nearest neighbors in descending order of similarity with pi−1;
4: for j = 1 to K do
5: Obtain the temporal target position p

′
j = pj◦yj where yj is the transformation

associated with pj ;

6: Extract the image patch Ij at p
′
j and do a verification SVM(Ij);

7: if SVM(Ij) = true then
8: break;
9: end if

10: end for
11: if there is one patch Ij that is verified to be valid then

12: pi ← p
′
j ;

13: yi ← yj ;
14: else
15: pi ← p

′
1;

16: yi ← y1;
17: end if
18: end for
19: pt = pi;

Algorithm 2 summarizes the detection step. As it states, estimation of the
new target position is done for M rounds iteratively. For each round, K nearest
neighbors are retrieved and sorted in descending order. SVM is then applied to
verify each of them in order to pick the first valid one. The iteration stops either
when it reaches M rounds or the most recent transformation yi is smaller than
a threshold δ. In this paper we set δ as 5 in pixels.
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3 Experiments

3.1 Experiment Setup

We implement our algorithm by C++ in Linux-32bit on a PC with an Intel
Core i5 2.5GHz CPU and 4GB RAM. Similar with [6], we use Haar-like feature
and generate a 192-dimension vector for each image patch. The Multi-Probe Lo-
cality Sensitive Hashing(MPLSH) is implemented by lshkit, a publicly available
C++ library of the MPLSH algorithm, with the parameters where W is 1.0,
the number of hash tables L is 4, the probing step level T is 5, and the nearest
neighbors number K is 10. The online SVM algorithm, Larank, is implemented
by our own code with reference to [6] but under the two-class setting, and we
set the support vector budget as 200. A Gaussian kernel is applied and the slack
value is set as 100. The learning radius for LSH database is 20. The positive
sample radius R1 for classifier update is set as 2 and the negative radius R2 is
50. The static update frequency F is set as one per 4 frames for all the sequences.

Three evaluation metrics are applied here: VOC overlap ratio (VOR), cen-
ter location error (CLE) and tracking success rate (SR), all calculated between
algorithm output boxes Bo and ground truth boxes Bg. VOR is defined by
area(Bo∩Bg)
area(Bo∪Bg) , CLE is defined as the average distance between the centers of Bo

and Bg, and SR is defined as the ratio of frames whose VOR are larger than
50% among all frames.

Table 1: The VOC overlap ratio (VOR) comparison results of 14 trackers over 15 sequences with
an average value for each tracker. Numbers are represented in percentage. The best and the second
best in each row is shown in bold and underlined, respectively

Ours MTT CT Frag DFT BSBT L1APG IVT MIL Struck LSH TLD ASLA VTD

Deer 45.77 21.30 2.73 11.73 45.58 13.29 39.61 13.71 37.85 44.86 4.93 34.63 4.87 41.27
Sylvester 73.63 71.17 60.79 60.35 25.43 62.14 35.68 54.60 8.46 73.66 62.17 61.36 63.89 61.24

Fish 87.67 64.51 66.92 49.21 65.86 60.60 86.18 81.54 61.92 82.19 85.70 67.71 84.73 51.46
Coke 67.09 59.28 26.91 3.69 15.01 27.04 21.66 10.56 3.25 56.55 16.30 17.04 18.56 12.06

Crossing 71.18 17.53 60.15 30.06 59.92 20.93 17.43 22.76 64.73 54.95 35.77 28.34 70.56 27.86
Couple 68.28 37.48 5.39 60.24 8.73 5.70 34.85 7.27 42.11 50.89 9.10 50.83 18.58 8.88
David 55.49 43.19 18.29 2.33 24.82 41.54 54.80 9.37 5.35 47.19 32.42 49.74 53.74 14.23

FaceOcc2 77.21 75.65 59.21 66.19 77.94 57.20 70.45 71.77 58.81 77.46 72.12 61.69 74.74 44.73
Football1 74.49 56.91 28.59 28.59 74.34 11.96 38.89 51.76 25.52 56.58 72.90 37.34 57.62 77.62

Boy 78.02 40.42 41.73 41.73 19.39 67.51 35.13 25.75 2.21 74.96 33.97 49.21 72.72 75.19
Jumping 64.31 6.96 31.52 65.08 5.96 26.25 42.22 20.25 28.31 60.84 12.11 57.20 24.26 10.47

MountainBike 77.14 71.08 12.95 10.59 77.25 63.20 67.98 39.79 12.60 70.80 73.51 18.52 69.59 34.03
Tiger1 64.11 32.44 13.40 34.95 58.17 27.37 42.48 12.96 4.95 63.90 12.41 47.19 31.83 64.50
Tiger2 55.00 46.58 41.79 7.66 34.39 21.50 58.94 17.86 12.52 60.48 12.97 54.94 18.46 25.29
Trellis 71.91 60.74 34.22 35.71 41.74 15.27 42.56 16.73 26.70 70.89 40.53 39.61 71.47 38.95

Average 68.75 47.02 33.64 33.87 42.30 34.77 45.92 30.45 26.35 63.08 38.46 45.02 49.04 39.19

3.2 Quantitative performance evaluation

In this section we evaluate the performance of our algorithm by comparison
with other 13 trackers. Among them, [25], [15], [26], [27], [4], [28], [29], [16], [30]
have Matlab implementation in [31] and we use it directly in our experiment.
For [5], [6], [32], [33], we use the code posted on their corresponding websites.
Fifteen publicly available sequences from [31] are selected for the comparison,
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and we use each sequence with its original length. The chosen sequences contain
challenges such as illumination variation, fast motion, partial occlusion, in-plane
and out-of-plane rotation, to name just a few. The ground truth data for the
sequences are also collected from [31] except David, where we use the ground
truth of all the frames from frame No.1 to frame No.771 given by [16] instead
of from 300 to 771. The longer one contains larger illumination change and we
regard it as a higher evaluation standard for algorithm performance. Table 1-3
show the results of performance comparison under the three criteria. Figure 3
provides a complete view of performance by plotting CLE frame-by-frame for all
the 11 trackers on 15 sequences. As we can see, our algorithm has overall better
performance over others, and even for the ones where our tracker does not get
the best, its performance is still close to the best. For a concise display, we only
show CLE plots here. VOR and SR plots can be found in our supplementary
material.

Table 2: The center location error (CLE) comparison results of 14 trackers over 15 sequences with
an average value for each tracker. Numbers are represented in pixels. The best and the second best
in each row is shown in bold and underlined, respectively

Ours MTT CT Frag DFT BSBT L1APG IVT MIL Struck LSH TLD ASLA VTD

Deer 12.35 26.80 114.12 82.35 12.48 43.25 17.84 40.24 14.99 12.87 55.84 27.94 93.26 15.41
Sylvester 5.78 6.51 15.48 14.75 53.96 12.01 28.02 37.58 82.73 6.00 13.00 12.01 9.60 21.06

Fish 2.86 13.26 13.51 25.41 12.71 31.75 3.69 3.70 15.08 4.74 3.79 9.10 4.21 19.21
Coke 5.81 8.53 21.52 66.97 31.12 18.01 22.98 43.94 59.91 7.77 33.30 29.31 29.44 37.09

Crossing 2.26 40.20 5.52 37.52 7.88 45.82 53.37 3.01 4.19 6.66 25.43 22.97 2.07 39.32
Couple 4.59 36.51 103.84 9.54 112.79 88.10 27.45 96.20 37.75 33.32 111.77 18.37 89.91 105.88
David 6.12 17.75 41.67 114.50 41.97 18.51 11.69 220.06 75.50 14.01 24.28 15.11 6.83 76.53

FaceOcc2 6.96 9.18 17.69 14.71 7.47 31.03 9.06 6.91 19.37 6.79 10.02 14.75 8.34 51.35
Football1 3.35 11.90 18.75 18.75 5.76 46.82 13.94 19.12 17.46 7.04 3.76 78.81 6.50 2.69

Boy 1.34 24.23 29.85 29.85 76.43 5.48 35.10 51.80 26.84 1.92 19.38 2.45 1.47 1.21
Jumping 5.53 53.03 16.92 4.50 63.35 27.36 23.33 36.73 16.89 6.18 40.39 7.41 48.83 56.01

MountainBike 3.14 5.09 113.18 120.07 3.62 7.23 5.32 43.25 112.80 5.30 3.82 102.00 4.98 67.28
Tiger1 7.49 33.44 48.15 28.24 11.81 30.51 22.84 119.08 56.28 7.66 57.42 14.87 31.78 7.32
Tiger2 9.19 13.09 14.39 71.30 24.93 31.12 8.23 37.08 42.81 7.19 52.25 11.65 84.61 31.71
Trellis 7.35 13.42 39.43 56.25 48.22 80.69 38.69 122.35 54.70 8.53 59.14 16.89 5.82 37.48

Average 5.61 20.86 40.93 46.31 34.30 34.51 21.44 58.74 42.49 9.07 34.24 25.58 28.51 37.97

3.3 Qualitative performance evaluation

In this section we discuss several key components of our algorithm and illus-
trate their contribution to the overall performance of our tracker. We treat our
algorithm with different components as different algorithms and we do the sim-
ilar experiments as the ones conducted in the last section. Similarly, we use the
three same criteria to evaluate the overall performance on all the 15 sequences.
For each of the following two components, we tune one at a time and control
the other by setting it as the default value. The defaults values are F = 4 and
K = 20.

Static LSH update frequency F The static LSH update frequency deter-
mines the regular learning pace and therefore ensures the sufficiency of informa-
tion. We set this parameter as 1, 2, 4, 8, infinite, respectively, meaning that the
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Table 3: The success rate (SR) comparison results of 14 trackers over 15 sequences with an average
value for each tracker. Numbers are represented in pixels. The best and the second best in each row
is shown in bold and underlined, respectively

Ours MTT CT Frag DFT BSBT L1APG IVT MIL Struck LSH TLD ASLA VTD

Deer 26.76 7.04 1.41 7.04 22.54 11.27 33.80 9.86 16.90 21.13 2.82 9.86 4.23 30.99
Sylvester 96.65 84.98 84.76 70.71 28.55 72.27 33.80 67.88 0.37 93.98 76.28 80.97 78.44 71.52

Fish 100.00 81.09 71.22 41.81 60.29 65.34 100.00 100.00 83.19 100.00 100.00 94.96 100.00 55.04
Coke 89.00 85.57 13.06 3.44 9.62 24.74 22.68 13.40 1.37 57.73 15.12 15.12 15.81 12.71

Crossing 100.00 22.50 76.67 40.83 66.67 23.33 22.50 23.33 86.67 70.83 41.67 23.33 95.00 38.33
Couple 76.43 32.86 5.00 70.00 10.00 7.14 32.86 8.57 57.14 61.43 10.00 55.71 23.57 10.71
David 76.62 53.90 7.79 0.13 13.38 36.88 84.42 15.97 0.13 64.16 12.34 57.79 71.17 7.01

FaceOcc2 100.00 96.06 71.31 75.25 100.00 65.02 96.31 92.36 77.83 99.75 98.03 73.77 94.58 51.23
Football1 100.00 59.46 25.68 25.68 87.84 10.81 33.78 63.51 9.46 54.05 97.30 51.35 51.35 100.00

Boy 99.34 48.01 53.16 53.16 23.59 87.21 43.85 30.90 0.33 98.50 32.89 42.86 97.84 99.67
Jumping 98.72 6.39 16.29 96.81 8.63 31.31 64.22 25.56 1.28 93.61 12.46 77.96 33.23 14.38

MountainBike 100.00 100.00 16.67 11.84 100.00 89.04 89.91 52.63 16.23 90.35 98.25 25.44 93.86 42.11
Tiger1 87.29 37.57 2.54 40.11 72.88 25.14 43.50 15.54 2.82 86.72 10.45 55.65 38.14 79.10
Tiger2 63.84 51.23 33.70 9.59 39.18 13.15 75.34 20.82 11.51 77.81 14.25 69.86 22.74 20.27
Trellis 95.61 67.66 37.08 42.18 51.14 11.25 51.14 17.93 31.99 93.67 43.76 50.44 89.81 44.99

Average 87.35 55.62 34.42 39.24 46.29 38.26 55.21 37.22 26.48 77.58 44.37 52.34 60.65 45.20

LSH database is updated every 1, 2, 4, 8 frames in addition to the dynamic strat-
egy and infinite means there is no static frequency and updating only depends
on the dynamic control. Table 4 shows the comparative performance under the
three metrics on all the 15 sequences. As we can observe, for each of the three
criteria, our algorithm performs best in terms of overall accuracy when F is 4,
which is a proper value to keep the learning pace reasonably slow and satisfy
the purpose of preventing data redundancy.

Table 4: Comparison results of our algorithm with different frequency values on 15 sequences based
on VOC overlap rate (VOR), center location error (CLE), and success rate (SR). We only display
the best result in red under each criterion for clarity and conciseness

VOR CLE SR

Sequences F=1 F=2 F=4 F=8 F=inf F=1 F=2 F=4 F=8 F=inf F=1 F=2 F=4 F=8 F=inf
Deer 47.03 46.31 45.77 46.11 45.47 11.98 12.25 12.35 12.24 12.42 33.80 23.94 26.76 28.17 28.17

Sylvester 66.95 58.33 73.63 62.13 64.95 9.78 33.21 5.78 15.02 11.99 82.16 80.45 96.65 72.19 80.00
Fish 49.32 85.77 87.67 86.40 86.40 27.06 3.76 2.86 3.54 3.54 59.45 100.00 100.00 100.00 100.00
Coke 50.91 56.16 67.09 66.17 66.17 9.25 8.05 5.81 5.60 5.60 52.58 72.16 89.00 83.51 83.51

Crossing 36.64 28.32 71.18 71.34 19.30 25.78 54.94 2.26 2.61 64.34 48.33 38.33 100.00 100.00 24.17
Couple 54.75 65.73 68.28 27.92 47.88 17.83 5.55 4.59 70.95 42.61 64.29 75.71 76.43 32.86 64.29
David 54.34 43.74 55.49 53.39 53.39 6.61 16.74 6.12 8.71 8.71 75.32 52.21 76.62 74.42 74.42

Faceocc2 69.79 78.44 77.21 77.09 75.85 12.88 6.27 6.96 6.56 7.10 86.70 100.00 100.00 100.00 100.00
Football1 43.24 41.66 74.49 66.30 50.91 26.42 49.78 3.35 5.01 10.64 51.35 51.35 100.00 74.32 54.05

Boy 70.53 67.06 78.02 69.74 26.76 2.46 3.35 1.34 2.53 20.87 97.67 88.04 99.34 95.51 31.73
Jumping 62.51 64.79 64.31 19.76 63.68 5.86 5.35 5.53 54.23 5.77 97.44 98.40 98.72 29.71 99.36

MountainBike 33.74 62.82 77.14 55.43 20.35 63.72 6.73 3.14 48.80 105.07 40.35 91.23 100.00 69.74 26.32
Tiger1 23.34 28.12 64.11 54.29 9.57 58.52 62.94 7.49 10.84 55.84 19.77 36.16 87.29 50.28 5.08
Tiger2 21.48 46.18 55.93 19.65 18.02 36.75 18.61 9.60 60.29 79.96 24.38 48.22 63.84 24.93 22.19
Trellis 47.42 28.76 71.91 57.66 21.22 29.60 82.90 7.35 18.38 74.28 50.79 36.20 95.61 69.42 25.48

Number of retrieved nearest neighbors K Intuitively, the larger this pa-
rameter is, the more positive neighbors there will be, and correspondingly the
more confident the results will be. However, a neighbor set with larger size also
contains more weak neighbors, which may increase the risk of false verification
by the classifier. Here, we aim to evaluate the effect of this factor by setting K
as 5, 10, 15, and 20 and apply the same experiments on each of them. Table 5
shows the comparative performance under the three metrics on the 15 sequences.
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Fig. 5: The frame-by-frame center location error (CLE) plots for all the 15 sequences. Our method
is drawn in red.

As shown, 10 is the best value for K in terms of overall performance. It is worth
noticing that for most of the sequences the results of K = 10 and K = 20 are the
same. This is a desirable property because it indicates that most positive nearest
neighbor is among the top 10 in the neighbors list. Thus, it is not necessary to
retrieve large amount of neighbors to achieve promising performance.

Table 5: Comparison results of our algorithm with different numbers of nearest neighbors on 15
sequences based on VOC overlap rate (VOR), center location error (CLE), and success rate (SR).
We only display the best result in red under each criterion for clarity and conciseness

VOR CLE SR

Squences K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20 K=1 K=5 K=10 K=20
Deer 41.95 45.77 45.77 45.77 20.25 12.35 12.35 12.35 29.58 26.76 26.76 26.76

Sylvester 72.62 73.17 73.63 73.63 6.22 5.97 5.78 5.78 95.76 95.76 96.65 96.65
Fish 84.34 87.63 87.67 87.67 4.58 2.85 2.86 2.86 100.00 100.00 100.00 100.00
Coke 70.01 63.83 67.09 17.74 4.69 6.44 5.81 52.27 87.29 82.47 89.00 23.37

Crossing 69.00 71.18 71.18 71.18 3.66 2.26 2.26 2.26 95.00 100.00 100.00 100.00
Couple 56.30 68.28 68.28 68.28 38.49 4.59 4.59 4.59 72.14 76.43 76.43 76.43
David 53.35 53.56 55.49 55.49 8.38 8.23 6.12 6.12 71.82 71.69 76.62 76.62

Faceocc2 77.78 77.21 77.21 77.10 6.71 6.97 6.96 7.01 100.00 100.00 100.00 100.00
Football1 30.12 55.28 74.49 74.49 83.71 10.54 3.35 3.35 32.43 62.16 100.00 100.00

Boy 76.96 76.96 78.02 78.02 1.56 1.56 1.34 1.34 99.00 99.00 99.34 99.34
Jumping 19.79 64.31 64.31 64.31 56.70 5.53 5.53 5.53 30.03 98.72 98.72 98.72

MountainBike 53.57 77.14 77.14 77.14 48.82 3.14 3.14 3.14 66.23 100.00 100.00 100.00
Tiger1 8.04 64.01 64.11 24.30 52.65 7.88 7.49 56.60 8.47 84.75 87.29 30.79
Tiger2 60.43 56.41 55.93 30.03 7.85 9.17 9.60 61.02 73.97 64.38 63.84 36.99
Trellis 64.78 65.09 71.91 46.21 12.31 11.58 7.35 57.03 73.99 85.59 95.61 54.13
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4 Conclusion

In this paper we propose a novel tracking framework based on cooperation of
unsupervised similarity searching and supervised classification. We regard track-
ing as a problem of similarity matching on streaming data, and use an SVM based
classifier to improve its accuracy and control the LSH learning frequency. From
a learning view of point, this strategy is an innovative variant of the well-studied
classification-based tracking, which assigns each sample with a confidence value
while our method directly assigns the transformation structure. Benefiting from
that, our method avoids the brute-force search within the output space and suc-
cessfully alleviates the intrinsic obscurity of supervised approaches in describing
targets. We show experimentally that our tracker has superior performance over
state-of-art trackers.

We do believe that the proposed tracking framework contributes to a brand
new field where more unsupervised strategies could be introduced into tracking.
Future studies can be done based on this framework, such as using other un-
supervised structures for similarity matching and applying more sophisticated
novelty detection algorithms for controlling updating frequency. Besides, trans-
formation model can also be enriched in order to include more variation types
such as rotation and scale changes.
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